Lifetime imaging of a fluorescent protein sensor reveals surprising stability of ER thiol redox
نویسندگان
چکیده
Interfering with disulfide bond formation impedes protein folding and promotes endoplasmic reticulum (ER) stress. Due to limitations in measurement techniques, the relationships of altered thiol redox and ER stress have been difficult to assess. We report that fluorescent lifetime measurements circumvented the crippling dimness of an ER-tuned fluorescent redox-responsive probe (roGFPiE), faithfully tracking the activity of the major ER-localized protein disulfide isomerase, PDI. In vivo lifetime imaging by time-correlated single-photon counting (TCSPC) recorded subtle changes in ER redox poise induced by exposure of mammalian cells to a reducing environment but revealed an unanticipated stability of redox to fluctuations in unfolded protein load. By contrast, TCSPC of roGFPiE uncovered a hitherto unsuspected reductive shift in the mammalian ER upon loss of luminal calcium, whether induced by pharmacological inhibition of calcium reuptake into the ER or by physiological activation of release channels. These findings recommend fluorescent lifetime imaging as a sensitive method to track ER redox homeostasis in mammalian cells.
منابع مشابه
Catalysis of disulphide bond formation in the endoplasmic reticulum.
Disulphide bonds are critical for the maturation and stability of secretory and cell-surface proteins. In eukaryotic cells, disulphide bonds are introduced in the ER (endoplasmic reticulum), where the redox conditions are optimal to support their formation. Yet, the correct pairing of cysteine residues is not simple and often requires the assistance of redox-active proteins. The enzymes of the ...
متن کاملDual-functional probes for sequential thiol and redox homeostasis sensing in live cells.
A new type of resorufin-based dual-functional fluorescent probe whose fluorescence emission features are sensitive to thiol compounds and redox homeostasis was developed. Thiols-triggered nucleophilic substitution of the probes converts the nonfluorescent probe to the highly fluorescent resorufin moiety; the released resorufin not only enables fluorescence signaling specific for thiol compounds...
متن کاملGlutathione- and non-glutathione-based oxidant control in the endoplasmic reticulum.
The redox-active tripeptide glutathione is an endogenous reducing agent that is found in abundance and throughout the cell. In the endoplasmic reticulum (ER), the ratio of glutathione to glutathione disulfide is lower compared with non-secretory organelles. This relatively oxidizing thiol-disulfide milieu is essential for the oxidative folding of nascent proteins in the ER and, at least in part...
متن کاملReduction of the endoplasmic reticulum accompanies the oxidative damage of diabetes mellitus.
The endoplasmic reticulum (ER), similary to other subcompartments of the eukaryotic cell possesses a relatively oxidizing environment. The special milieu of ER lumen is important for many ER-specific processes (redox protein folding, glycoprotein synthesis, quality control of secreted proteins, antigen presentation, etc.). Despite of the vital importance of redox regulation in the ER, we have a...
متن کاملRedox-dependent stability, protonation, and reactivity of cysteine-bound heme proteins.
Cysteine-bound hemes are key components of many enzymes and biological sensors. Protonation (deprotonation) of the Cys ligand often accompanies redox transformations of these centers. To characterize these phenomena, we have engineered a series of Thr78Cys/Lys79Gly/Met80X mutants of yeast cytochrome c (cyt c) in which Cys78 becomes one of the axial ligands to the heme. At neutral pH, the proton...
متن کامل